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Element-by-element approximate factorization, implicit-explicit and adaptive 

implicit-explicit approximation procedures are presented for the finite-element 

formulations of large-scale fluid dynamics problems. The element-by-element 

approximation scheme totally eliminates the need for formation, storage and inversion 

of large global matrices. Implicit-explicit schemes, which are approximations to 

implicit schemes, substantially reduce the computational burden associated with large 

global matrices. In the adaptive implicit-explicit scheme, the implicit elements are 

selected dynamically based on element level stability and accuracy considerations. 

This scheme provides implicit refinement where it is needed. 

The methods are applied to various problems governed by the 

convection-diffusion and incompressible Navier-S tokes equations. In all cases 

studied, the results obtained are indistinguishable from those obtained by the implicit 

formulations. 
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INTRODUCI'ION 

Signifcant improvements have been made in computer memory and speed in 

recent years. However, the existing computer power is still far behind the demands 

from scientists for large-scale fluid dynamics calculations. Implicit schemes, which 

are desirable for their stability and accuracy properties, lead to large global coefficient 

matrices which need to be formed, stored and inverted. Direct management of such 

matrices is very difficult for large-scale, geometrically complicated two-dimensional 

problems and is virtually impossible for large-scale three-dimensional problems. For 

example, a cubic domain with 30 nodal points along each side and with four 

unknowns at every node will produce some 108,000 equations with 7.8 x lo8 

entries in the global coefficient matrix. Even with the currently available 

supercomputers it is almost hopeless to try to handle directly such a large equation 

system. 

To overcome the shortage of computer power, many researchers have developed 

algorithms for large-scale problems. In their application of domain decomposition 

methods, Glowinski, Dinh and Periaux [ 11 successfully coupled the incompressible 

viscous flow and incompressible potential flow models employed in different 

subdomains. A conjugate-gradient method, which is basically suitable for the 

symmetric and positive-definite systems, was employed to solve the variational 

problem. For the nonsymmetric and nonpositive-definite systems, one has to find an 

appropriate preconditioner for each problem; this needs much sophisticated work 



[2-41. A three-dimensional flow simulation with 1283nodal points was made by 

Rogallo [5] with the alternating-direction method. A new class of algorithms in 

numerical linear algebra which take advantage of the parallel computation capabilities 

of modem computers also provides hope [a. 
In this report, we present element-by-element (EBE) approximate factorization, 

implicit-explicit (IMEX), and adaptive implicit-explicit (AXE) schemes for large-scale 

computations in fluid dynamics. Compared to implicit methods, these schemes 

possess, to a great extent, similar desirable stability and accuracy properties, yet result 

in substantial reduction in computer memory and CPU time demands. 

The element-by-element approximate factorization is in some sense related to 

domain-decomposition [ 1,7] and alternating-direction ( or operator-splitting ) [8- 1 11 

schemes. These schemes, contrary to the EBE method, are based on global 

approximations. The EBE method was first proposed by Hughes, Levit and Winget 

[ 12,131 with applications to transient heat conduction, structural and solid mechanics 

problems. Preliminary application to fluid mechanics problems within the context of 

the compressible Euler equations were presented in Hughes, Levit, Winget and 

Tezduyar [14]. In this report, we present our EBE formulation for problems with 

nonsymmetric, nonpositive-definite spatial differential operators. Currently we focus 

on the convection-diffusion and the incompressible Navier-S tokes equations. In the 

EBE formulation, global coefficient matrices are approximated by sequential product 

of much simpler matrices which are based on the most natural unit in the finite-element 

method, the element-level matrix. Every calculation is done at the element level. The 

method keeps the versatility of the finite-element formulation in its easy adjustment to 

irregular meshes. Other advantages of the finite-element method such as easy 

implementation of the boundary conditions and the source terms are also retained in the 
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EBE formulation. 

Our implicit-explicit approximation schemes for fluid dynamics problems are 

based on the work of Hughes and Liu [15,16] which was for solid mechanics and heat 

transfer applications. We consider problems governed by the convection-diffusion 

and the incompressible Navier-Stokes equations. In this approach, for the elements 

which are designated to be implicit, the element level matrices are kept as they are, 

whereas for the explicit elements the element level matrices are approximated by a 

diagonal matrix. The implicit element-explicit element decision i s  based on the local 

stability criterion. 

In the adaptive implicit-explicit scheme the implicit element-explicit element 

decision is made dynamically. The stability and accuracy criteria applied to each 

element, based on the solution Erom the previous iteration or previous time step, 

determine whether an element needs to be'implicit. In this approach we can adaptively 

have implicit refinement where it is needed for stability and accuracy. Compared to 

other adaptive schemes which are based on element redistribution or element 

subdividing [17], the AIE approach involves minimal bookkeeping and no geometric 

constraints; therefore the method is very easy to implement. 

In Chapter 2, model problems are described and their spatial and temporal 

discretizations are given. In Chapter 3, the stability and accuracy analysis needed for 

the development of the IMEX and AIE schemes is performed. The EBE, IMEX, and 

AIE schemes are discussed in Chapters 4 and 5. Numerical results are presented in 

Chapter 6 and the conclusions are given in Chapter 7. 
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CHAPTER 2 

MODEL PROBLEMS - SPATIAL AND TEMPOW 

DISCRETEATIONS 

We consider model problems governed by the convection-diffusion equation 

and the vorticity stream-function formulation of the two-dimensional incompressible 

Navier-Stokes equations. A formal statement of the problems and the corresponding 

spatial and temporal discretization for both cases are given below. 

Convection-Diffusion Euuatioq 

Let C2 and r denote the computational domain and its boundary. 

Timedependent convection-diffusion of an unknown scalar function <p is governed by 

the following set of differential equations, boundary conditions, and initial condition: 

a,,+ u*v @ = V*( lc V# ) + f, on Rx]O,T[ (2.1) 

n K V Q  ( x ,  t ) = h ( x ,  t), v x E rh, t E 3 O,T 1 (2.3) 
and 

@ ( X , 0 = X 1, on SZ (2.4) 

where the velocity field u = u ( x ) is given and K is the conductivity matrix. The 
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source tenn is given as f = f ( x , t ). The outward unit vector normal to the boundary 

r is denoted by n, whereas g, h and (Do are prescribed functions. r and rh are the g 

mutually exclusive but complementary subsets of the boundary r with Dirichelet and 

Neumann boundary conditions respectively. That is, 

Multiplying equation (2.1) by the weighting function k and applying Green's 

theorem, we obtain the following weak form, 

f f f 

and 

Finite-element spatial discretization of equations (2.7) and (2.8) leads to the following 

semi-discrete equations: 

. c , .  

MQ,+ E @ =  E (2.9) 
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where fi, and Fare the "mass" matrix, "stiffness" matrix, and the generalized 

"force" vector, respectively; CP and & represent the dependent variable and 

its temporal derivative at the nodes. The infomation regarding the initial condition is 

contained in vector aW 
Burger's equation, given below, can be treated as a special case of the 

convection-diffusion equation, 

(rgq+ = o  V x e  ] O,L[, t E  J O,T[ (2.1 1) 

This simple nonlinear hyperbolic equation is used to study the numerical performance 

related to shock formulation and entropy condition. A finite-element discretization of 

this equation leads to the following semi-discrete nonlinear equation system, 

(2.12) 

where N ( QD) is a nonlinear function of CP. 

Vorticitv Strea m-Functlon Form of the T w o - D i m  
bcomuressible Na vier-S tokes 

The incompressibility condition and the nonlinear convection term constitute 

some of the major difficulties for the numerical methods associated with the 

Navier-S tokes equations. By employing a vorticity stream-function formulation, one 

can easily handle the incompressibility condition. However, the extension of the 

numerical algorithm to three-dimensional problems is rather cumbersome and the 

treatment of the boundary conditions on no-slip surfaces and at out-flow boundaries is 
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complicated ( see, e.g., [18] ). The field equations consist of a time-dependent 

transport equation for the unknown vorticity function w and an equation which relates 

the unknown stream function Y to vorticity. They are given as follows: 

(2.13) a,,+ u-VO = v V20 on Qx]O,T[ 
and 

V2Y=-O,  on R (2.14) 

where v is the kinematic viscosity. The velocity field u, which is now an unknown, is 

related to the stream function by the following equations: 

(2.15) 

(2.16) 

Note that equations (2.15) and (2.16) lead to a zero-divergence condition, 

v-u = a+ /ax, ax, - ahy /ax, ax2 = o (2.17) 

In other words, the incompressibility condition on u is assured by the definition of Y. 

The boundary conditions for o and Y are given below: 

v n - vo ( x,t = C( x,t 1, V x E rg, t E ] 0,T [ (2.19) 

and 
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n-VY ( x,t ) = h ( x,t ), V x e  rh, t E  ]O,T[ (2.21) 

where r- and ri; are the mutually exclusive but complementary subsets of the 

boundary r with Dirichelet and Neumann boundary conditions for a, whereas r and 

g 

g 

r h  are similar boundary subsets for Y, that is 

and 

0 = rg n rh 

r =rgurh 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

The difficulty associated with the lack of boundary conditions for the vorticity and its 

normal derivative on no-slip surfaces can be handled by a discrete Green's formula 

approach which is described in Tezduyar, Glowinski, and Glaisner [19]. 

The initial condition for the vorticity is given as 

a ( x, 0 ) = a. on f2 (2.26) 

Multiplying (2.13) and (2.14) by weighting functions 

following weak foxms can be obtained via the Green's theorem: 

and w respectively, the 

a 

(2.27) 



and 

(2.28) 

Finite-element spatial discretization of equations (2.27) and (2.28) leads to the 

following set of equations: 

- M o + K Y  = F, 

(2.29) 

(2.30) 

(2.3 1) 

c c d  
where M, K, F, M, K, and F are the matrices and vectors resulting from the spatial 

discretization; o, a, and Y represent the vorticity, its temporal derivative and the 

stream function at the nodes. The initial condition for o is represented by coo. 

SDatial Discretizatior! 

Due to the existence of nonsymmetric spatial operators ( convection terms) in 

our model problems, the "best approximation" property of the Galerkin finite element 

formulations [20] is lost, and therefore spurious oscillations can be encountered in 

convection-dominated problems. Streamline-UpwindPetrov-Galerkin (SUPG) 

formulations are employed for the spatial discretization of our model problems. These 

formulations are well-known for their robust and accurate perfonnance for problems 

with nonsymmetric spatial operators. Several papers can be found in scientific 
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literature on this type of schemes ( see, e.g., [21, 221). For the purpose of this 

thesis, we briefly describe the SUPG scheme employed in terns of the weighting 

function basis k; this description is given by 
LI 

N, = N, + h I2 S-VN, (2.32) 

or ... 
N, = N, + T u-VN,, (2.33) 

where the subscript "a" refers to an element node, N, is the solution function basis, h 

is the "element length" in the direction of u , and s is the unit vector in u direction. 

The "algorithmic Courant number" C,,and the "algorithmic time constant" z are 

related by the following expression, 

CZ., =Ilu 112~/h. (2.34) 

TernDora 1 Discretization 

Consider the following general semi-discrete equation system related to our 

model problems: 

(2.35) 

(2.36) 

where the vector a is the temporal derivative of the vector v. N (v) is a vector-valued 

function of v which we will, in general, assume to be nonlinear. 

The tangent " stiffness matrix" K is defined as 
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K =  ~ N ( v ) / ~ v  (2.37) 

A predictor/multicorrector transient integration algorithm [23] is employed to 

solve equations (2.35) and (2.36). Let a subscript denote the time step and a 

superscript denote the iteration step. The algorithm can be summarized as follows: 

1. given vo find a, from 

M a,+ N (vd = F, 

n n+l 

2. predictorstage 

vn+ ( 1-a ) At a,, 

= 0 

i+ i+l 

3. correctorstage 

Rn+li = Fn+l - M an+li - N (vn+li ) 

(2.38) 

(2.39) 

(2.40) 

(2.41) 

M* Aan+li = Rn+,i (2.42) 

an+li+l = an+li + Aan+l i 

and 

~ , , ~ i + l  = vn+li + a At 

(2.43) 

(2.44) 

where a E [ 0,1] is a parameter which controls the stability and accuracy. 
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Convergence is checked by inspecting the norm of R,,+li and Aan+li. 

Remark: 
1. A consistent derivation for M* gives the following expression, 

M* =M + a At K (2.45) 

If left as it is, this expression for M* leads to an jmdicit formulation which 

requires only one correction for linear systems. However, for nonlinear 

systems, one needs to have as many corrections as the convergence criterion 

dictates. 

2. Achoiceof 

M* =ML (2.46) 

where M, is a lumped version of matrix M , leads to an cxplicit formulation. 

Explicit formulations in general are less stable, less accurate, but also less costly 

(less memory and less CPU time) compared to implicit schemes. The 

conditional stability of these methods are usually expressed in terms of a limit 

on the element Courant number. The element Courant number C,,is defined 

as 

Cat= I I u  IIAt/h 

3. In the SUPG formulation, the choice of 

z = a A t  

leads to a symmetric positive-definite M* for pure convection problems. 

(2.47) 

(2.48) 
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pn>of: 

A general convection equation is given as 

4,,+ u*v  0 = f (2.49) 

The following semi-discrete ( spatially continuous) formulation can be obtained 

from equation (2.49), 

(4n+l - 4,,)/At + u*V ( (1-CC) 4n+ cc 4n+l) 

= (La) fn + a fn+l (2.50) 

For the weak form of equation (2.50), we employ aweighting function 

which is given as 

... 
w = w +TU* vw, (2.5 1) 

where w and 4 come from the same space. Note lrrat for this p w  convection 

system, a Dirichlettypeboundary conditionfor4 isrequired on thepart of 

the boundary where the information comes from outside the domain, and w has 

to satisfy the homogeneous form of the same boundary condition. That is, 

4 ( x ) = g ( x )  V X C  [ x l x e  r , n ( x ) - u ( x ) c O )  (2.52) 
and 

w ( x ) = O  V X E  [ X I X E  r , n ( x ) * U ( X ) c O )  (2.53) 

The weak form of equation (2.50) with the weighting function of equation 

13 



(2.51) can be written as 

( a At )2 (u-Vw, u-V ) = right hand side (2.54) 

where the bilinear form ( , ) is defined as 

(2.55) 

Note that only the left hand side of equation (2.54) corresponds to M*. 

Rewriting equation (2.54), we get 

(w + a At u*Vw, + a At U-V@~+~)  = righe hand side (2.56) 

We need to show that the left hand side of equation (2.56) has a symmetric 

positive-definite form. It is obvious that this bilinear form is symmetric and that 

( w + a A t u * V w ,  w + a A t u * V w )  2 0 

We have to show that if 

(1/ a A t )  w +u*VW = 0, 

then 

w = o  

(2.57) 

(2.58) 

(2.59) 
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Note that equation (2.58) is nothing more than a linear, steady-state, 

convection-reactiontype equation for w. Since (1/ a At .) is always positive, 

the reaction is a consumption on w. If the value of w at any point can be traced 

back to a boundary point, because of equation (2.53), w = 0; if not, w = 0 

because of consumption. This completes our proof, based partly on physical 

reasoning, that M* is symmetric positivedefinite. 
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CHAPTER3 

STABILlTY AND ACCURACY ANALYSIS 

In convection-dominated problems, Galerkin foxmulation, just like the classical 

central-difference schemes, generates numerical oscillations especially in the presence 

of sharp layers. To minimize these oscillations, one can refine the grid at the 

oscillation zones, but then must pay for increased memory and CPU costs. Another 

option is the classical upwind scheme which leads to forward- or backward-difference 

treatment of the convection terms depending on the direction of the convection 

velocity. With this option, while the wiggles are minimized, usually an excessive 

amount of artificial diffusion is introduced into the numerical simulation. To explain 

this, let us consider a simple one-dimensional convection problem, 

where u > 0 is the convection velocity. For the node numbered i at time step n+l, the 

upwind scheme leads to the following fully discrete equation, 

(l/At) (a:+' - Cp:) + u (lh) (a:+' - 0 i-1 n+') = 0, (3.2) 

in which At is the time integration step and h is the spatial discretization step. It is 

clear that equation (3.2) can be rewritten as 
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(l/At) (a?' - a:) + u (1/2h) (@i+ln+' - Q i-1 n+1) 

- (U h / 2) (l/hz> ( Qi+ln+l + a. n+1- 2Q.n+l) = 0 
I- 1 1 

Returning to the continuous counterpart of equation (3.3), we obtain 

Qq + u - (U h / 2) QyXx 0 

(3.3) 

(3.4) 

It can be observed that, compared to equation (3. l), an artificial diffusion term with 

coefficient value of (uh / 2) has been introduced into the continuous equation by the 

upwind scheme. For high convection velocities and large elements, the artificial 

diffusion becomes significant. This results in simulations which depart substantially 

from the real physical phenomenon. 

Streamline-Upwind/Petrov-Galerkin formulations [21,22] keep the numerical 

oscillations and the level of artificial diffusion to a minimum. Weighting functions 

leading to the SUPG formulations arc described by equations (2.1)-(2.3). Tezduyar 

and Ganjoo [21] have investigated the various choices of the C& term in the SUPG 

formulations by a phase accuracy and amplitude analysis for a one-dimensional 

transient pure convection equation (3.1). These choices of the C& tem are 

czs= (choice 1) 

(choice 2) 

qs= 2A15 + ( 1 - N15)  Cat (choice 3) 

17 



In [21], the exact solution of equation (3.1) is assumed to be of the form, 

a(x,t) = e-(S+ico)t e-h 

and the finite-element solution is of the form, - .m a(xj,t.) = e4S*aM+i ,  

(3.8) 

(3.9) 
r 

where 6 and 6 are the exact and approximate damping rates; o and represent the 

exact and approximate frequencies. The wave number is denoted by k ( k = 2 1c / X, h 

is the wave length). The significant quantities in this analysis arc the algorithmic 

damping ratio (ADR = 6 / o ) and the frequency ratio (FR = / o ). A good scheme 

should have an ADR approaching zero and a FR approaching unity. From the rates 

these quantities approach these limits, one can infer the order of accuracy of the 

c c s  

algorithm. 

Let h denote the element length; a dimensionless wave number is defined as 

q = k h  (3.10) 

This is a measure of the spatial refinement of the numerical method. Figures 3.1-3.3, 

adopted from [21], show the ADR and FR values versus q for a set of element 

Courant numbers and various choices of &. The order of accuracy can be 

revealed from the ADR and FR curves. A scheme is first-order accurate if either of the 

curves has a finite slope as q approaches zero. It is at least second-order accurate if 

both curves have zero slopes as q approaches zero. It can be seen that all implicit 

schemes have at least second-order accuracy. In fact, choice 3 leads to a fourth-order 

accurate scheme [24] as Cat approaches zero. For explicit one-pass schemes, 
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Fig. 3.1 Stability and accuracy characteristics for the implicit SUPG formulation. 
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Fig. 3.3 Stability and accuracy characteristics for the explicit two-pass SUPG 
formulation. 
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choice 2 gives second-order accuracy. All explicit two-pass schemes are second-order 

accurate. 

Based on a single degree of freedom model analysis performed by Tezduyar 

and Hughes [25] for the one-dimensional convection equation, we obtain the 

following stability conditions: 

1. Implicit scheme: 

All choices of qT are unconditionally stable for a 2 1/2 and r I 1/4 where r is a 

parameter which depends on the numerical integration technique used for the time 

dependent terms. Typical values are r = 0 for lumped mass, r = 1/6 for consistent 

mass and r = 1/4 for PG bade) mass ( see [21 J ). 

2. Explicit one-pass schemes: 

All choices of qT are conditionally stable; the stability criterion yields 

(3.1 1) 

where v = 1- cos q. Note that, for Galerkin schemes ( qT = 0 ), the method is 

unconditionally unstable. It can be shown that for all choices of C,,the stability 

limit is 

‘At < 

3. Explicit two-pass schemes: 

The following inequality must be satisfied for stability: 

(3.12) 
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where 

(3.13) 

(3.14) 

(3.15) 

B , = a C , % v -  1 - 2 r v  (3.16) 

and 

B,= a Cat w - qz w/2, (3.17) 

in which w = sin q. The worst case occurs for q = YC (which leads to v = 2 and w = 

0); then equation (3.13) implies 

4 Cat ( 2 a Cat GT -1 - 4r ) x 

( 2 a [ Cat qT - (1+ 4r)/4aI2 + 1 - (1+4r)2/8a } < 0 (3.18) 

It is obvious that under the choices of a 2 1/2 and r S 1/4, 

1 - (1+4r)*/8a 2 0, (3.19) 

then equation (3.18) leads to the following stability condition, 

1 + 4 r  
2a 

CAtCz., (3.20) 

For various choices of qT, the stability limits can be expressed as follows: 
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1 +4r 
2a choice 1: cat< 

choice2 Cat< ( 1+4r )la 
2a 

(3.21) 

(3.22) 

-3415 + 44/15 + 4 ( 1- M15) ( 1+4r /2a) 
(3.23) 

2 (  1-Wl5) cat choice 3: 

Similar analysis has been done in onedimensional diffusion equation for the Galerkin 

finite-element formulation. The conditional stability of the explicit schemes are 

expressed in terms of a limit on the diffusion Courant number. The diffusion Courant 

number CK is defined as 

cK = 2 K A t /  h2, (3.24) 

where K is the diffusion coefficient. The stability and accuracy properties can be 

summarized as follows: 

1. Implicit scheme: 

a) Unconditional stability is assured for a 2 1/2 and r S 1/4. 

b) The algorithm is second-order accurate. It becomes fourth-order accurate with 

the choice of r = 1/12. 
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2. Explicit one-pass scheme: 

a) It is conditionally stable. The stability criterion is 

CK s 1 

b) The algorithm is fkst-order accurate. 

3. Explicit two-pass scheme: 

a) It is conditionally stable. The stability criterion is 

1 4  r 
2 a  

‘K * 

(3.25) 

(3.26) 

b) The accuracy is of the same order as the implicit scheme. 
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CHAPTER 4 

ELEMENT-BY-ELEMENT (EBE) APPROXIMATE 

FACTOREATION 

The equation system of (2.42) can be rewritten as follows, 

A x = b ,  (4.1) 

where x is the increment vector Aa, b is the residual vector R, and A is the coefficient 

matrix M*. 

A parabolic regularization of equation (4.1) can be expressed as 

W dy /de  + A y = b, (4.2) 

where 8 is a dimensionless "pseudo-time" and 

We assume that 

The choice of W depends on the properties of A. For a symmetric 

Hughes, Levit and Winget [12,13] proposed W to be the positive-definite A, 
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diagonal part of A, 

W = diagA (4.5) 

This was found to be effective for all problems studied in [12,13]. Alternately W can 

be chosen to be the lumped mass matrix mentioned in Chapter 2. That is, 

W = M, (4.6) 

This choice was proposed by Hughes, Winget, Levit and Tezduyar [14]. 

We employ an unconditionally stable pseudo-time stepping algorithm given 

below: 

( W + a A 8 A ) A y m  = Aer,,, 

r, = b - A y ,  

and 

(4.9) 

in which a E [1/2, 11. The scheme is backward-Euler with a = 1, and 

Crank-Nicolson with a = 0.5. Equation (4.7) can also be written as 

Aym = D(I+aDAD)- ’Dr , ,  (4.10) 

where I is the identity matrix and 

(4.1 1) D = (W-lA8)” 

Note that equation (4.11) requires W to be positive-definite. While the choice of 

equation (4.5) does not guarantee this when M* is not positivedefinite, the alternate 
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choice of equation (4.6) does. One also needs to note that for problems in fluid 

mechanics, M* in general is not symmetric, positivedefinite; however, as mentioned 

in Chapter 2, the choice of quation (2.50) assures that it is. 

Since we are interested in the steady-state solution of quation (4.2), usually the 

backward-Euler scheme is adopted to avoid undamped and oscillating solutions as the 

condition number of the problem deteriorates or as large pseudo-time steps are chosen 

WI. 
Rewriting equation (4.10) with the choice of a = 1, we obtain 

Aym = D ( I +  DAD)-'Dr, 

The EBE approximate factorization is based on the following expressions: 

1. one-pass EBE approximation: 

nel 

-1 
(I+DAD) = n ( I +  DAeD), 

(4.12) 

(4.13) 

in which ne1 is the total number of elements in the domain, and Aeis the 

contribution of e* element ( or subdomain) to A. Clearly, this approximation 

depends on the element ordering. 

2. two-pass EBE approximation: 

ne1 1 

-1 -1 
(I+DAD) - n ( I + l / 2  DA"D) l'l ( I + 1 / 2  DAW) (4.14) 
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It should be noted that the appmximation of the one-pass EBE deteriorates as a 

large A0 is taken to assure a fast steady-state solution of. equation (4.2). The 
two-pass EBE approximation has a better performance in this situation. 

We update y m+l according to the following formula, 

where s is a search parameter obtained by minimizing II rm+l 112 with respect to s, 

s = (A Ay,).r, / II A Aym 112 (4.16) 

Remark: 
1. The need for the formation and storage of the global matrix A has been eliminated. 

There is no need to store the element level matrices A%; however, if desired, 

instead of recomputing for each EBE iteration, the element level matrices can be 

s t d  Even then, the storage requirement is far less than that of a global matrix. 

For instance, in a cubic grid with N nodes at each side and one unknown at each 

node, 2N5 entries must be stored in the global matrix for the implicit calculation. 

EBE needs only 64 entries in each element matrix. Even if all element level 

matrices are stored, the total number of entries is only 64N3. 

2. The EBE approximate factorization procedure is parallelizable. This aspect 

makes EBE favorable especially since parallel computations are expected to 

play a more and more important role in computational fluid dynamics. 

3. It must be well understood that if the EBE procedure converges, it converges 

to the solution of equation (4.1), which is the equation system of the implicit 

method. 

29 



IMPLICIT-EXPLICIT APPROXIMATION SCHEMES 

In solving partial differential equations via finite-element method, since the 

solution may vary significantly in the domain, a nonuniform mesh is usually employed 

for stable, accurate, and eficient solution procedures. A finite element analyst can 

vary the element sizes in hidher nonuniform mesh anyway he / she pleases but usually 

according to some criteria based on past experience, physical intuition, and 

mathematical insight. Implicit schemes, though stable and accurate, may cost too much 

(CPU time and storage) to compute. To guarantee stable solutions for explicit 

schemes, one has to limit the time discretization step size based on the smallest element 

size in the entire domain. This m a y  place a rather prohibitive constraint on the 

explicit integration scheme. The implicit-explicit approximation schemes provide an 

effective way to overcome these drawbacks. The basic idea associated with the 

implicit-explicit schemes can be well demonstrated by the following simple 

onedimensional initial /boundary-value problem: 

+ u Q), - K #,xx = 0, V XE ] 0,l [, t E [ 0,T ] 

@(O, t  ) =  1, V t E [ O,T] 

Q) ( 1,t ) = 0, V t e  [O,T] 
and 

@ ( x,o ) = 0. V X E  ] 0,l [ (5.4) 
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The steady-state analytical solution to equation (5.1) is 

e-- e& 

1 - e a  
# =  (5.5) 

For sufficiently large u / ~ ,  the solution is essentially unity in the interior of the domain, 

decaying through a boundary layer near x = 1 to assume the boundary value of = 0. 

In our computation, a finer mesh is employed in the right region of the domain as 

shown in Figure 5.l(a). A constant time step size is chosen such that the element 

Courant number is 0.7 in the left and 1.4 in the right regions. Figure 5.l(b) shows the 

solution obtained by the implicit scheme. Figure 5.l(c) shows the unstable solution 

obtained by the explicit one-pass scheme; this is due to the high Courant number in the 

right region. In the implicit-explicit scheme, we treat the elements in the right region 

implicitly and the ones in the left region explicitly. The solution is stable and accurate 

as shown in Figure S.l(d). 

Let & be the set of all elements, e = 12, ..., nel. The assembly of the global 

matrix M* can be expressed as follows, 

where A is the assembly operator. 

Let & and E, be the subsets of & corresponding to "implicit elements" and 

"explicit elements" respectively, such that 

and 
0=E,nE, 
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a 
x = 0. x =  1. 

b 

C 

d 

Fig. 5.1 One-dimensional boundary layer problem: (a) Finite element mesh. 
Solutions by various schemes: (b) Implicit scheme. (c) Explicit one-pass scheme. 
(d) Implicit-explicit one-pass scheme. 
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Rewriting equation (5.6), we get 

Implicit-explicit approximation [15,16] is based on the replacement of (m*)e by the 

element level lumped mass matrix (m)eL, 

(5.10) 

Let MI and K1 denote respectively the mass matrix and stiffness matrix obtained 

by assembling the implicit elements and ME denote the diagonal mass matrix from the 

explicit elements ( a t  KE is neglected). An equivalent fonn of equation (5.10) can be 

expressed as 

M* = ME +MI + a t  K1 (5.1 1) 

Many finite element simulations involve movement of fronts in the computational 

domain. The unknown variable can be the temperature in the heat equation, the 

vorticity in the Navier-Stokes equations, or the oil concentration in the enhanced oil 

recovery processes. Due to the presence of the convection operator and sharp layers in 

the solution, the solution is prone to instability and inaccuracy around the moving 

fronts. In such cases implicit-explicit schemes can be employed by concentrating the 

implicit elements around the moving fronts. The implicit elements need to somehow 

follow the moving fronts as shown in Figure 5.2. 
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Fig. 5.2 Implicit element distribution in the moving front problem. 
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We propose that the sets and are determined dynamically. The 

determination will be based on several criteria including stability and accuracy 

considerations for a l l  types of transport phenomena present. Stability and accuracy 

characteristics of algorithms are described not only in terms of the Courant numbers 

(C,and C,) but also in terms of the dimensionless wave number ( see Figures 

l(a)-3(f) ). For the stability consideration, the elements for which the Courant 

numbers exceed the stability limit of the explicit schemes as described in Chapter 3 are 

assigned to be implicit while explicit elements are introduced elsewhere to save 

computer memory. The accuracy criterion is determined by the dimensionless wave 

number of the solution &om the previous time step (or iteration). We can achieve this 

by defining a determination criterion which is based on some measure of the jump in 

the solution or jump in the flux across an element under consideration. The jump 

values are computed based on the previous time step (or iteration). Currently we 

employ the following definition for the jump in the solution across an element, 

(5.12) 
a a 

where "a" is the element node number. Note that the threshold value for this jump 

which makes the element eligible for the implicit set 6 should be based on the global 

scaling of the solution field. Such a global scaling idea is closely related to the global 

scaling concept of the "discontinuity capturing" scheme described in Tezduyar and 

Park [27]. 

In the adaptive implicit-explicit (AIE) approach, one can have a high degree of 

refinement throughout the mesh but can raise the implicit flag only for those elements 

which are proposed to be treated implicitly. 
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Compared to other adaptive concepts such as adaptive element redistribution or 

adaptive element-subdividing, the AIE scheme is far easier to implement because it 

involves no geometric changes; the bookkeeping involved is minixnal. 

Remark: 
1. By appropriately numbering the nodes based on the distribution of the implicit 

elements. one can substantially reduce the bandwidth of the global matrices. 

2. By the aid of bandwidth optimizer packages available in the market, one can 

renumber the nodes every time step ( or every iteration) in the AIE calculations 

to efficiently save the computer memory. 
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CHAPTER6 

The EBE, implicit-explicit, and AIE schemes have been tested on various 

problems governed by the model equations stated in Chapter 2. The results are 

compared with those obtained by the implicit and explicit schemes. The implicit 

solutions were shown by Ganjoo 1281 and Glaisner [29] to be in agreement with the 

results from various past publications. 

One-Dimensional Ad vectlon of a Cos 'ne Wave 

This problem consists of pure advection of a cosine wave from left to right. A 

cosine wave of unit amplitude is initially set in the left part of the domain. A unifom 

mesh containing 50 elements and 102 nodal points is employed. A homogeneous 

Dirichlet boundary condition is specified on the extreme left, and a homogeneous 

Neumann boundary condition is imposed on the extreme right. The advection velocity 

is 1.0 and the time step is such that the element Courant number is 0.6. Figures 

6.l(a)-6.l(d) compare at the end of the same time interval the results obtained by 

various schemes. Figure 6.2 shows the distribution of implicit elements for the AIE 

calculation at various time steps. The amplitude of the cosine wave decays to 0.969 

for the implicit and EBE schemes, and to 0.965 for the adaptive implicit-explicit 

one-pass (AIE-1) scheme. A considerable decay of amplitude (to 0.769) is observed 

for the explicit one-pass (EXP- 1) scheme. 
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b 

C 

d 

Fig. 6.1 One-dimensional advection of a cosine wave: Solution obtained by various 
schemes at t= 0.0 and 0.408 (a) Implicit scheme. (b) EXP- 1. (c) AIE-1. ( d ) E BE. 
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8 = 1  

t r = 9  

8 =  17 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

.................... ) tr = 25 

tr - 34 . . . . . . . . . . . . . . .  

Fig. 6.2 One-dimensional advection of a cosine wave: Implicit elements in the AE- 1 
calculation at various time steps. 
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e-Dimensional Advection of a DI 'scon tinuitv 

A discontinuity is advected from left to right under the same set-up conditions as 

the previous case. Figures 6.3(a)-6.3(d) show the results from v&ous schemes at the 

end of the same time interval. Similar overshoots are found in the implicit, EBE, and 

AIE-1 schemes. Undershoot is observed in the implicit and EBE schemes. By 

changing the jump criterion described in Chapter 5, the same undershoot can be 

obtained in the AIE-1 scheme. The discontinuity becomes smeared in the EXP-1 

scheme. Figure 6.4 shows the distribution of implicit elements for the AIE calculation 

at various time steps. 

Two-Dimensional Advection of a Cosine Hiu 
flranslatiw Puff) 

Two-dimensional advection and rigid body rotation of a cosine hill arc typical 

examples for testing algorithms in convection-dominated problems ( see, e.g., [30] ). 

The translating puff problem consists of advection of a cosine hill from the extreme 

left to the right. Two meshes are tested: a uniform mesh with 30 x 30 elements in a 

1x1 domain and a nonunifom mesh with 45 x 30 elements in a 1 x 0.75 domain. For 

the uniform mesh an initial cosine hill profile with unit peak amplitude and base radius 

of 0.2 is centered at (xl,%) = (0.267,0.5). The diffusion coefficient is set to be lod; 

the advection velocity is unity in xl-direction, and the time step is adjusted to give a 

Courant number of 0.6. An homogeneous Dirichlet boundary condition is specified 

on all boundaries except at x1 = 1.0 where an homogeneous Neumann boundary 

condition is imposed. Figures 6.5(a)-6.5(c) show the results at various times obtained 

by AIE-1. Figures 6.6(a) - 6.6(c) show the distribution of the implicit elements at the 
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a C 

b d 

Fig. 6.3 One-dimensional advection of a discontinuity: Solution obtained by various 
schemes at t= 0.0 and 0.408 (a) Implicit scheme. (b) EXP-1. (c) AlE-1. (d ) E BE. 
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.............-....... tr= 17 

Fig. 6.4 One-dimensional advection of a discontinuity: Implicit elements in the AIE-1 
calculation at various time steps. 
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a 

b 

C 

Fig. 6.5 Elevation plots for the translating 
puff on a uniform mesh obtained by the 
AIE-1 scheme.(a) Initial condition. 
(b) at t = 0.3. (c) at t = 0.72 . 
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C 

Fig. 6.6 Distribution of the implicit 
elements for the AIE-1 calculations 
of the translating puff on a uniform 
mesh. (a) at t = 0. (b) at t = 0.3. 
(c) at t = 0.72. 



corresponding times for the AIE- 1 computations. Figures 6.7(a)-6.7(b) show the 

results at various time steps obtained by EXP-1. The peak amplitude value of the 

cosine hill at t = 0.72 is 0.972 for the implicit and EBE schemes ind 0.974 for AIE-1. 

EXP-1 gives a stable solution with poor accuracy. 

For the nonuniform mesh, the element length in the left region of the domain is 

half of that in the right region. The time step is chosen such that the Courant number 

is 1.8 in the left and 0.9 in the right. Theinitial profileis centered at (xl,%) = 

( 0.233,0.375 ) with base radius of 0.2. All other set-up conditions are the same as in 

the case of the uniform mesh. Figures 6.8(a)-6.8(c) show the elevation plots at 

various times obtained by the adaptive implicit-explicit two-pass scheme (AIE-2). 

Figures 6.9(a)-6.9(c) show the distribution of the implicit elements for the AIE-2 

computations. The peak amplitude value at t = 0.72 is 0.969 for the implicit, EBE and 

AIE-2 schemes. The results for the explicit two pass (Exp-2) scheme are shown in 

Figures 6.10(a)-6.10(b). It can be seen in Figure 6.10(b) that in the left region of the 

domain the solution becomes unstable due to the high Courant number. 

The mean bandwidth (averaged over the number of time steps) of the global 

coefficient matrix for the AIE scheme in the case of the uniform mesh is 25% of that 

for the implicit scheme. The average number of implicit elements at each time step is 

173. For the nonuniform mesh the average mean bandwidth for the AIE scheme is 

79% and the average number of implicit elements is 1036. 

Two-Dimensional RI *gid Bodv Rotation of a Cos ine Hill 
f Rotatine Pum 

The set-up conditions for this problem are the same as in the uniform mesh case 

of the translating puff problem except that the velocity field is rotational with respect to 
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a 

b 

Fig. 6.7 Elevation plots for the translating puff on a uniform mesh obtained by the 
EXP-1 scheme. (a) at t = 0.3. (b) at t = 0.72. 
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C 

Fig. 6.8 Elevation plots for the translating 
puff on a nonuniform mesh obtained by 
the ALE-2 scheme. (a) Initial condition. 
(b) at t = 0.3. (c) at t = 0.72. 

a 

b 

Fig. 6.9 Distribution of the implicit elements 
for the AIE-2 calculations of the translating 
puff on a nonuniform mesh. (a) at t = 0.0. 
(b) at t= 0.3. (c) at t = 0.72. 
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b 

Fig. 6.10 Elevation plots for the translating puff on a nonuniform mesh obtained by the 
EXP-2 scheme. (a) at t = 0.3. (b) at t = 0.72. 
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the center of the domain (is., u1 = - 3 + 0.5, u2 = x1 - OS), and all boundary 

conditions are of the Dirichlet type and are homogeneous. The time step is adjusted to 

give a Courant number of 0.216 at the tip of the cosine hill. A full revolution is 

achieved in 200 time steps. Figures 6.1 l(a)-6.1 l(c) show the results at various times 

obtained by AIE-1. Figures 6.12(a)-6.12(~) show the distribution of the implicit 

. 

elements at the corresponding times. The peak amplitude after a full revolution is 

found to be 0.984 for the implicit and EBE schemes, and 0.980 for AIE-1. The mean 

bandwidth (averaged over the number of time steps) for the AIE scheme is 26% of the 

implicit scheme. The average number of implicit elements at each time step is 173. 

As in the case of the translating puff (uniform mesh), the results for EXP-1 are not 

satisfactory. Figures 6.13(a)-6.13@) demonstrate the performance of EXP-1 in this 

problem. 

.. ock Structure/ EntroDv Conmhon Test Problem 

The problem is governed by equation (2.1 1). A computational domain of unit 

length is taken. The number of elements is 40. The initial condition is shown in frame 

0 of Figure 6.14. The explicit solution is very close to the implicit solution such that 

there is no need to test the ATE scheme in this problem. EBE and the implicit schemes 

are compared. The differences are indistinguishable. The results obtained by the EBE 

scheme are shown in Figure 6.14. Each Erame corresponds to a time step of At = 0.6. 

As can be observed, the initial condition contains two stable shocks and one unstable 

shock. The unstable shock immediately breaks down, and eventually the two stable 

shocks merge to form a steady shock. Figure 6.15 shows the history of the EBE 

iterations (number of pseudo-time iterations in the first comtor  step versus the 
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b b 

c 

Fig. 6.1 1 Elevation plots for the rotating Fig. 6.12 Distribution of the implicit 
elements for the AIE- 1 calculations of the 

Y pdf  obtained by theAIE-1 scheme. 
(a) Initial condition. (b) at t = 3.14. rotating puff. (a) at t = 0 .  (b) at t = 3.14. 

(c) at t = 6.28 . (c) at t = 6.28. 
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. 

a 

b 

Fig. 6.13 Elevation plots for the rotating puff obtained by the EXP- 1 scheme. 
(a) at t = 3.14. (b) at t = 6.28. 
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Fig. 6.14 Shock structure/entropy condition test problem: Solutions obtained by the 
EBE scheme at various time steps. 
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Fig. 6.15 Shock smcture /entropy condition test problem: History of the number of 
EBE iterations. 

I 
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corresponding time). 

flow Past a circularQli& 

A two-dimensional viscous flow past a circular cylinder has been of special 

interests among researchers in the field of computational Ruid dynamics ( see, e.g., 

[31,32] ). In this problem we have 1940 elements and 2037 nodal points. A refined 

and implicit zone is located around the cylinder. Diffusivity is 0.0025 giving a 

Reynolds number of 100 based on the diameter of the cylinder. The time step is fixed 

at 1.0. The number of corrections at each time step is allowed EO be as many as the 

convergence criterion (lo4) dictates.The mesh, the boundary conditions, and the 

distribution of the implicit elements are shown in Figure 6.16. Figures 

6.17(a)-6.17(~) show the streamlines, relative streamlines and isovorticity lines for the 

symmetric solution at time = 700 obtained by the implicit-explicit 0 scheme. 

After that, an artificial disturbance is placed shortly to initiate a nonsymmetric solution. 

Figures 6.18(a)-6.18(~) show the nonsymmetric resuits at time = 1,2200 obtained by 

the EBE scheme. The implicit and the implicit-explicit schemes all give very close 

results (differences less than 0.5%). The explicit scheme diverges. The mean 

bandwidth of the implicit-explicit scheme is 47% of the implicit scheme. The number 

of implicit elements is 320. 

Driven Cavitv Flo W 

Because of the discontinuity of the velocity at the comers, driven-cavity flow 

problem has become an important example for testing a numerical method during the 

recent years ( see, e.g., [33] ). In this problem, the flow velocity is zero on three 

. 
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Y = 0.125 x y, 
0 =o. 

* Y = 0 ,  aY/an = 0 on the cylinder. 

I 

Fig. 6.16 Row past a circular cylinder at Reynolds number 100: Finite element mesh, 
boundary conditions and the distribution of the implicit elements for the IMEX 
calculations. 

a w a n  = 0, 

= 0. 
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Fig. 6.17 Flow past a circular cylinder at Reynolds number 100: Symmetric solutions 
obtained by the EBE scheme at t = 700 (a) Local streamlines. (b) Relative streamlines. 
(c) Isovorticity lines. 
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Fig. 6.1 8. Flow past a circular cylinder at Reynolds number 100. Nonsymmetric 
solutions obtained by the EBE scheme at t = 1200. (a) Local smamlines. 
(b) Relative streamlines. (c) Isovorticity lines. 



sides and unity on the fourth side. A unifommesh of 30 x 30elements in a 1 x 1 

domain is chosen. DBusivity is 0.0025, time step is 0.1, and Reynolds number is 400 

based on the side length of the square domain. The number of corrections at each time 

step is limited to 5. Figure 6.19(a) shows the mesh, the boundary conditions, and the 

distribution of the implicit elements. Results obtained by the IMEX scheme are shown 

in Figures 6.19@)-6.19(d). Those results are indistinguishable from the implicit and 

EBE solutions (differences less than 0.001%) . The mean bandwidth for 

implicit-explicit scheme is 44% of the implicit scheme. The number of implicit 

elements is 403. 
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a C 

Y = 0, 
a Y h  = 0. 

b d 

Fig. 6.19. Driven-cavity flow at Reynolds number 400: Solutions obtained by the 
IMEX scheme at t = 10. (a) Finite Element mesh, boundary conditions and the 
distribution of the implicit elements. (b) Saamlines. (c) Corner streamlines. (d) 
Isovorticity lines. 
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CHAPTER7 

CONCLUSIONS 

In this report, we have presented approximate solution schemes for large 

equation systems resulting from finite-element formulation of fluid dynamics 

problems. The element-by-element (EBE) approximate factorization scheme is 

essentially an iterative scheme which totally eliminates the need for the formation, 

storage, and inversion of a large global matrix. All computations are performed at the 

element level. The method keeps the versatility of the fmite-element formulation in its 

easy adjustment to irregular mesh and its easy implementation to boundary conditions 

and source terms. Futhermore, the EBE approximate factorization procedure is 

parallelizable and this aspect of it makes it especially favorable since parallel 

computations are expected to play a more and more important role in computational 

fluid dynamics. 

Implicit-explicit schemes in nature are approximations to implicit schemes, yet 

they substantially reduce the cost of formation, storage, and inversion of a large global 

matrix. In this approach, for the elements which are designated to be implicit, the 

element level matrices are kept as they are, whereas for the explicit elements the 

element level matrices are approximated by a diagonal matrix. In the adaptive 

implicit-explicit (AIE) scheme, the implicit elements are selected adaptively. Selection 

of the implicit and explicit elements is based on several criteria including the stability 

and accuracy. For the stability consideration, the elements for which the Courant 

number exceed the stability limit of the explicit scheme are assigned to be implicit, 
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while explicit elements are introduced elsewhere to reduce cost in computer memory. 

The accuracy criterion is determined by the dimensionless wave number of the solution 

Erom the previous time step ( or iteration). By appropriately numbering the nodes 

based on the distribution of the implicit elements, one can substantially reduce the 

bandwidth of global matrices. This scheme allows us to have implicit refinement 

where it is needed. Compared to other adaptive concepts such as element 

redistribution or element subdividing, the AIE scheme is far easier to implement. 

We have applied these schemes to various problems governed by 

convection-diffusion equation and the vorticity stream-function form of 

the 

the 

two-dimensional Navier-S tokes equations. S treamline-Upwind/ Petrov-Galerkin 

formulations are employed for the spatial discretization of our model problems and a 

predictor-corrector algorithm is used to solve the resulting semi-discrete equation 

system. The results obtained by EBE, IMEX and AIE in all cases are 

indistinguishable from those obtained by the true implicit formulations while the 

storage required is substantially reduced. The savings in the storage of the coefficient 

matrix in various test problems are summarized in Table 7.1. Recently the author has 

developed a new finite-element procedure for vorticity stream-function fomulation in 

which the coefficient matrix derived from the Poisson's equation is symmetric and 

positive-definite [34]. For procedures which involve symmetric positive-definite 

mamces, convergence of the EBE, IMEX and ATE schemes are more predictable. 

The results indicate a great potential for the future work in this area. It is 

believed that it will not be very long before these schemes are accepted as powerful 

tools in large-scale computing. 
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Case Savings in the smxage of 
the coefficient matrix 

Tnuulating Puff 
(unironn mesh) 75% 

Tnuulating Puff 
(nonuniform mesh) 21 46 

Rotatjng Puff 74 96 

Flow past a Circular 
Cylinder 53 96 

Driven Cavity Flow 

scheme 

NE- 1 

AIE-2 

AIE- 1 

IMEX 

Table 7.1 Savings in the stwage of the coefficient ma& for VBfiOuj test problems. 

* M renumbering of the nodes ( see Remark (2) in Chapter 5) 

61 



REFERENCES 

[ 1 ] R. Glowinski, Q. V. Dinh, and J. Periawc," Domain Decomposition Methods for 

Nonlinear Problems in Fluid Dynamics," Computer Met hods in Anplied 

echanics and Engineen 40 (1983), pp. 27-109. 

[2] C. C. Paige and M. A. Saunders," LSQR: An Algorithm for Sparse Linear 

Equations and Sparse Least Square," ACM Tra nsactions o n Mathematical 

SoftwaR, 8 (1982), pp. 43-71. 

[3] G. W. Stewart," Conjugate Direction Methods for Solving Systems of Linear 

Equations," Numer. Math, ,21 (1973), pp. 285-297. 

[4] D. M. Young," Second-Degree Iterative Methods for the Solution of Large 

Linear Systems," J. A g r o  x. Theorv -, 5 (1972), pp. 137-148. 

[5] R. S. Rogallo," Numerical Experiments in Homogeneous Turbulence," NASA 

TN 81315, September 1981. 

[a] D. Heller," A Survey of Parallel Algorithms in Numerical Linear Algebra," 

SIAM Review, 20 (1978). pp. 740-777. 

, [7] J. M. Frailong and J. Pakleza," Resolution of General Partial Differential 

Equations on a Fixed Size SIMDNIMD Large Celluar Processor," in 

62 



Proceedings of the IMACS International Congress, Sorentc, Italie, (Sept. 1979). 

R. Glowinski," Numerical Methods for Nonlinear Variational Problems," 

Springer-Verlag, New York, 1984. 

D. W. Peaceman and H. H. Rachford," The Numerical Solution of Parabolic 

and Elliptic Differential Equations," J. SOC. Indust. ADD 1. M a  3 (19551, pp. 

28-41. 

[lo] J. Douglas, H. H. Rachford," On the Numerical Solution of Heat Conduction 

Problems in Two and Three Space Variables," Trans. Am. Math. Soc, , 82 

(1956), pp. 42 1-439. 

[ll] N.N. Yanenko," The Method of Fractional Steps," Springer-Verlag, New York, 

1971. 

[12] T. J. R. Hughes, I. Levit and J. Winget," Element-By-Element Implicit 

Algorithms for Heat Conduction," Journal of the Enpineexin? Mec hanics 

Division. ASCE, 109 (1983), pp. 576-585. 

[13] T. J. R. Hughes, I. Levit and J. Winget," An Element-by-Element Solution 

Algorithm for Problems of Structural and Solid Mechanics," Computer Metho& 

In ADD lied Mechanics and Enm _ 'neenu, 36 (1983), pp. 241-254. 

[14] T. J. R. Hughes, J. Winget, I. Levit, T. E. Tezduyar," New Alternating 

63 



Direction Procedures in Finite Element Analysis Based upon EBE Approximate 

Factorizations," Computer Methods for Nonlinear So lids and Mechan i G  S. N. 

Atluri and N. Perrone, eds., AMD Vol. 54 (1983), ASME, New York, 

pp.75-110. 

[15] T. J. R. Hughes and W. K. Liu, Implicit-Explicit Finite Elements in Transient 

Analysis: Stability Theory," Journal o f ADD1 ied Mechan ics, 45 (1978), pp. 

37 1-374. 

[16] T.J.R. Hughes and W.K. Liu," Implicit-Explicit Finite Elements in Transient 

Analysis: Implementation and Numerical Examples," Journal of ADDlied 

echanics, 45 (1978), pp. 375-378. 

[17] G. F. Carey and J. T. Oden," Finite Elements: Computational Aspects," Volume 

III, Prentice-Hall Inc., hglewood Cliffs, 1983, pp. 23-125. 

[18] M.O. Bristeau, R. Glowinski, and J. Periaux," Numerical Methods for the 

Navier-S tokes Equations Applications to the Simulation of Compressible and 

Incompressible Viscous Flows," Research Report UH/MD-4, February 1987, 

pp. 50-69. 

[19] T. E. Tezduyar, R. Glowinski, and F. Glaisner," Streamline-UpwindPetrov 

Galerkin Procedures for the Vorticity-S tream Function Form of the 

Navier-Stokes Equations," presented in the 5th International Conference on 

Numerical Methods in Laminar and Turbulent Flow, to be published, 

64 



. .  [20] R Wait," Function Spaces," The Matherntical B& of Finite Element Methods, 

D. F. Griffiths, ed., Oxford University Press, New Yak, 1984, pp.1-13. 

[21] T.E. Tezduyar and D.K. Ganjoo," Petrov-Galerkin Formulations with Weighting 

Functions Dependent upon Spatial and Temporal Discretization: Applications to 

Transient Convection-Diffusion Problems," ComDuter Methods in ADD lied 

Mechanics and Eneineen 'ng, 59 (1986), pp. 47-71. 

[22] A.N. Brooks and T. J.R. Hughes," Streamline UpwindPetrov-Galerkin 

Formulations for Convection Dominated Flows with Partial Emphasis on the 

Incompressible Navier-Stokes Equations," Computer Methods in ADD lied 

Mechanics and Enginecrirg, 32 (1982), pp.199-259. 

[23] T. J. R. Hughes," Analysis of Transient Algorithms with Particular Reference to 

Stability Behavior," Computat ional Methods fo r Transient Analv - sis, Ted 

Belytschko and T.J.R. Hughes, eds., North Holland Publishing Co., 

Amsterdam, 1984, pp. 67-153. 

[24] W. H. Raymond and A. K. Panot," Generalized Galerkin Methods for First 

Order Hyperbolic Equations," Journal o f ComDuta tional Phvsics, 12(1973), pp. 

435-46 1. 

[25] T. E. Tezduyar and T. J. R. Hughes," Development of Time-accurate Finite 

Element Techniques for First-order Hyperbolic System with Particular Emphasis 

65 



on the Compressible Euler Equations," Final Report, NASA-Ames University 

Consortium Interchange No. NCA2-OR745-104, April 1982. 

[26] G. F. Carey and J. T. Oden," Finite Elements: Computational Aspects," Volume 

ID, Prentice-Hall Inc., Englewood Cliffs, 1983, pp. 253-318. 

[27] T. E. Tezduyar and Y. J. Park," Discontinuity-Capturing Finite Element 

Formulations for Nonlinear Convection-Diffusion-Reaction Equations," 

ComDuter Methods in Amlied Me chanics and Engineering, 59 (1986), . 

pp. 307-325. 

[28] D. K. Ganjoo," Petrov-Galerkin Formulations for Various Transport Problems," 

M.S. Thesis, University of Houston, Department of Mechanical Engineering, 

1986. 

[29] F. Glaisner, '' Finite Element Techniques for the Navier-Stokes Equations in the 

Primitive Variables Formulation and the Vorticity Stream-Function Formulation," 

M.S. Thesis, University of Houston, Department of Mechanical 

Engineering, 1987. 

[30] P. M. Gresho and R. L. Lee," Don't Suppress the Wiggles-They Are Telling 

You Something !," Finite Element Methods for Convection Dominated Flows, T. 

J. R. Hughes, ed., AMD Vol. 34 (1979), ASME, New Yo&. 

[31] B. Fornberg," A Numerical Study of Steady Viscous Flow Past a Circular 

66 



Cylinder," J. Fluid Mech, 98 (1980). pp.819-855. 

[32] M. Braza, P. Chassaing and H. HaMinh," Numerical Study and Physical 

Analysis of the Pressure and Velocity Fields in the Near Wake of a Circular 

Cylinder," J. Fluid Me& 165 (1986), pp. 79-130. 

[33] R. Peyret and T. D. Taylor," Computational Methods for Fluid Flow," 

Springer-Verlag, New York 1983, pp. 199-207. 

[34] M.O. Bristeau, R Glowinski, and J. Periaux," Numerical Methods for the 

Navier-Stokes Equations Applications to the Simulation of Compressible and 

h c o m p ~ s ~ b ! e  Viswis Flows," Resmicti R r p i t  'U'&MD-4, Febiimi-j 1987, 

pp. 50-69. 

67 


